RESEARCH ARTICLE

NETWORK SCIENCE

Representing higher-order dependencies

in networks

2016 © The Authors, some rights reserved;
exclusive licensee American Association for
the Advancement of Science. Distributed
under a Creative Commons Attribution
NonCommercial License 4.0 (CC BY-NC).
10.1126/sciadv.1600028

Jian Xu,"? Thanuka L. Wickramarathne,?>>* Nitesh V. Chawla'%**

To ensure the correctness of network analysis methods, the network (as the input) has to be a sufficiently
accurate representation of the underlying data. However, when representing sequential data from complex
systems, such as global shipping traffic or Web clickstream traffic as networks, conventional network represen-
tations that implicitly assume the Markov property (first-order dependency) can quickly become limiting. This
assumption holds that, when movements are simulated on the network, the next movement depends only on
the current node, discounting the fact that the movement may depend on several previous steps. However, we
show that data derived from many complex systems can show up to fifth-order dependencies. In these cases,
the oversimplifying assumption of the first-order network representation can lead to inaccurate network anal-
ysis results. To address this problem, we propose the higher-order network (HON) representation that can dis-
cover and embed variable orders of dependencies in a network representation. Through a comprehensive
empirical evaluation and analysis, we establish several desirable characteristics of HON, including accuracy,
scalability, and direct compatibility with the existing suite of network analysis methods. We illustrate how
HON can be applied to a broad variety of tasks, such as random walking, clustering, and ranking, and we dem-
onstrate that, by using it as input, HON yields more accurate results without any modification to these tasks.

INTRODUCTION

Today’s systems are inherently complex, whether it is the billions of
people on Facebook powering a global social network, the transporta-
tion networks powering the commute and the economy, or the inter-
acting neurons powering the coherent activity in the brain. Complex
systems such as these are made up of a number of interacting com-
ponents that influence each other, and network-based representation
has quickly emerged as the norm by which we represent the rich in-
teractions among the components of such a complex system. These
components are represented as nodes in the network, and the edges
or links between these nodes represent the (ranges and strengths of)
interactions. This conceptualization raises a fundamental question:
Given the data, how should one construct the network representation
such that it appropriately captures the interactions among the compo-
nents of a complex system?

A common practice to construct the network from data (in a com-
plex system) is to directly take the sum of pairwise connections in the
sequential data as the edge weights in the network—for example, the
sum of traffic between locations in an interval (1-4), the sum of user
traffic between two Web pages, and so on (5-7). However, this direct
conversion implicitly assumes the Markov property (first-order depen-
dency) (8) and loses important information about dependencies in the
raw data. For example, consider the shipping traffic network among
ports, where the nodes are ports and the edges are a function of the
pairwise shipping traffic between two ports. When interactions are
simulated on the network, such as how the introduction of invasive
species to ports is driven by the movements of ships via ballast water
exchange, the next interaction (port-port species introduction) only
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depends on the current node (which port the ship is coming from),
although, in fact, the interaction may be heavily influenced by the
sequence of previous nodes (which ports the ship has visited before).
Another example is user clickstreams on the Web, where nodes are
Web pages and interactions are users navigating from one Web page
to another. A user’s next page visit not only depends on the last page
but also is influenced by the sequence of previous clicks. Thus, there
are higher-order dependencies in networks and not just the first-order
(Markovian) dependency, as captured in the common network repre-
sentation. Here, we focus on deriving the network based on the spe-
cific set of interactions, namely, the interactions induced by movements
among components of a complex system, wherein the sequence of
movement patterns becomes pivotal in defining the interactions.

Let us again consider the process of constructing a network from
the global shipping complex system by incorporating the movements
from the ship trajectories (Fig. 1A) (9, 10). Conventionally (1-7, 9), a
network is built by taking the number of trips between port pairs as
edge weights (Fig. 1B). When ship movements are simulated on this
first-order network, according to the network structure where the edge
Singapore — Los Angeles and the edge Singapore — Seattle have sim-
ilar edge weights, a ship currently at Singapore has similar probabil-
ities of going to Los Angeles or Seattle, no matter how it arrived at
Singapore. In reality, the global shipping data indicate that a ship’s
previous stops before arriving at Singapore influence the ship’s next
movement: the ship is more likely to continue on to Los Angeles if
it came from Shanghai and more likely to go to Seattle if it came from
Tokyo. A first-order network representation fails to capture important
information like this because, in every step, the flow of traffic on the
network is simply aggregated and mixed. As a consequence, trajec-
tories simulated on the first-order network do not follow true ship
movement patterns. By contrast, by breaking down the node Singapore
into Singapore| Tokyo and Singapore|Shanghai (Fig. 1C), the higher-
order network (HON) can better guide the movements simulated on
the network. Because ships can translocate species along intermediate
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A Original data Vessel | Depart Sailing_date | Arrive Arrival_date
V-001 Shanghai 2013-01-01 Singapore 2013-01-15
V-001 Singapore 2013-01-16 Los Angeles 2013-02-05
V-002 | Singapore 2013-02-01 Los Angeles 2013-03-08

D Variable orders of dependencies in HON
Singapore

Fig. 1. Necessity of representing dependencies in networks. (A) A
global shipping data set, containing ship movements as sequential data.
(B) A first-order network built by taking the number of trips between port
pairs as edge weights. A ship currently at Singapore has similar probabil-
ities of going to Los Angeles and Seattle, no matter where the ship came to
Singapore from. (C) By breaking down the node Singapore, the ship’s next
step from Singapore can depend on where the ship came to Singapore
from and thus more accurately simulate movement patterns in the original
data. (D) Variable orders of dependencies represented in HON. First-order
to fourth-order dependencies are shown here and can easily extend to
higher orders. Coming from different paths to Singapore, a ship will choose
the next step differently.

stops via partial ballast water exchanges (11), the ability to distinguish
between these cases is critical for producing accurate species introduc-
tion probabilities for each port.

Such higher-order dependencies exist ubiquitously and are indis-
pensable for modeling vehicle and human movements (12), email cor-
respondence, article and Web browsing (13-15), conversations (16),
stock market (17), and so on. Although higher-order dependencies
have been studied in the field of time series (17, 18), information the-
ory (19), frequent pattern mining (20), next-location prediction (21),
variable-order Markov (VOM) (22-24), hidden Markov model (25),
and Markov order estimation (26-28), they have focused on the
stochastic process, rather than on how to represent higher-order de-
pendencies in networks to adequately capture the intricate interactions
in complex systems. In the field of network science, the frontier of
addressing the higher-order dependencies still remains at the stage
of assuming a fixed second order of dependency when constructing
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the network (12, 29-32) or using multiplex networks (33), and there
is neither a thorough discussion beyond second-order dependencies
nor a systematic way of representing dependencies of variable orders in
networks. Although there have also been efforts to incorporate HON
structures for clustering (34, 35), ranking (36), and so on, these approaches
need to modify existing algorithms and are application-specific. As a
result, these methods are not generalizable to broader applications,
although we expect a network representation that is agnostic to the
end-analysis methods (more discussions in Materials and Methods).

Here, we present a novel and generalizable process for extracting
higher-order dependencies in the sequential data and constructing the
HON that can represent dependencies of variable orders derived from
the raw data. We demonstrate that HON is (i) more reflective of the
underlying real-world phenomena (for example, when using HON in-
stead of a first-order network to represent the global shipping data, the
accuracy is doubled when simulating a ship’s next movement on the
network and is higher by one magnitude when simulating three steps);
(ii) efficient in scaling to higher orders, because auxiliary higher-order
nodes and edges are added to a first-order network only where nec-
essary; and (iii) consistent with the conventional network representa-
tion, allowing for a variety of existing network analysis methods and
algorithms to run on HON without modification. These algorithms
and methods produce considerably different and more accurate results
on HON than on a first-order network, thus demonstrating the broad
applications and potential influences of this novel network representation.

We analyze a variety of real-world data including global shipping
transportation, clickstream Web browsing trajectories, and Weibo re-
tweet information diffusions. We show that some of them have depen-
dencies up to the fifth order, which the conventional first-order
network representations or the fixed second-order network represen-
tations simply cannot capture, rendering the downstream network
analysis tools, such as clustering and ranking, with limited and possi-
bly erroneous information about the actual interactions in data. We
also validate HON’s ability to reveal higher-order dependencies on a
synthetic data set, where we introduced dependencies of variable
orders through a process completely independent of the construction
of HON. We show that HON accurately identifies all the higher-order
dependencies introduced.

RESULTS

We start with an examination of the conventional network represen-
tation, showing its limitations and formally introducing the HON.
Then, with multiple real-world and synthetic data sets, we compare
our proposed network representation with the conventional ones in
terms of accuracy, scalability, and observations drawn from network
analysis tools.

The HON representation

Conventionally, a network (also referred to as a graph) G = (V, E) is
represented with vertices or nodes V as entities (for example, places,
Web pages, etc.) and edges or links E as connections between pairs of
nodes (for example, traffic between cities, user traffic between Web
pages, etc.). Edge weight W(i — j) is a number associated with an edge
i — j representing the intensity of the connection, which is usually
assigned as the (possibly weighted) sum of pairwise connections i — j
(for example, the daily traffic from i to j) in data (I-7, 9).
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A wide range of network analysis methods, such as PageRank for
ranking (37), MapEquation (38) and Walktrap (39) for clustering, and
link prediction methods (40, 41) use random walking to simulate
movements on networks (for example, ships traveling between ports,
users clicking through Web pages, etc.). If the location of a random
walker at time ¢ is denoted as a random variable X, where X can take
values from the node set V, then, conventionally (40, 42), the
transition probability from node i, to the next step i, , ; is proportional
to the edge weight W(i, — i , ;)

W(it—’itﬂ)

P(Xt+1 = it+1|Xt = it) =
2, W (ir—j)

(1)

This Markovian nature of random walking dictates that every
movement simulated on the network is only dependent on the current
node. In the conventional first-order network representation, every
node maps to a unique entity or system component, so that every
movement of a random walker is only dependent on a single entity
(Singapore in Fig. 1B). Data with higher-order dependencies that in-
volve more than two entities, such as “ships coming from Shanghai to
Singapore are more likely to go to Los Angeles” in the global shipping
data, cannot be modeled via the conventional first-order network rep-
resentation. Thus, the simulation of movement performed on such
networks will also fail to capture these higher-order patterns.

To represent higher-order dependencies in a network, we need to
rethink the building blocks of a network: nodes and edges. Instead of
using a node to represent a single entity (such as a port in the global
shipping network), we break down the node into different higher-
order nodes that carry different dependency relationships, where each
node can now represent a series of entities. For example, in Fig. 1C,
Singapore is broken down into two nodes: Singapore given Tokyo as
the previous step (represented as Singapore|Tokyo) and Singapore given
Shanghai as the previous step (represented as Singapore|Shanghai).
Consequently, the edges Singapore|Shanghai — Los Angeles and
Singapore|Shanghai — Seattle can now involve three different ports as
entities and carry different weights, thus representing second-order depen-
dencies. Because the out-edges here are in the form of i|h — j instead of
i — j, a random walker’s transition probability from node i to node j is

P(Xes1 = jIXe = (ilh)) = % ?

so that although a random walker’s movement depends only on the
current node, it now depends on multiple entities in the new network
representation (as in Fig. 1C), thus being able to simulate higher-order
movement patterns in the data. This new representation is consistent
with conventional networks and compatible with existing network
analysis methods, because the data structure of HON is the same as
the conventional network (the only change is the labeling of nodes).
This makes it easy to use HON instead of the conventional first-order
network as the input for network analysis methods, with no need to
change the existing algorithms. The algorithm to construct HON is in
Materials and Methods.

Rosvall et al. (12) consider a higher-order dependency, albeit with a
fixed second-order assumption. They propose a network representa-
tion composed of “physical nodes” and “memory nodes.” As we will
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show with experiments, variable orders of dependencies can coexist in
the same data set and can be up to the fifth order in our data. So if the
dependency is assumed as fixed second order, it could be redundant
when first-order dependencies are sufficient and could be insufficient
when higher-order dependencies exist. In HON, every node can repre-
sent an arbitrary order of dependency, so variable orders of dependen-
cies can coexist in the same network representation, as shown in Fig.
1D. For example, the fourth-order dependency relationship following
the path of Tianjin — Busan — Tokyo — Singapore can now be rep-
resented as a fourth-order node Singapore| Tokyo, Busan, Tianjin; the
second-order path Shanghai — Singapore is now a node Singapore|
Shanghai; first-order relationships are now in a node Singapore|-.
Yet these nodes of variable orders all represent the same physical lo-
cation Singapore. Compared with fixed-order networks, we will show
that our representation is compact in size by using variable orders and
embedding higher-order dependencies only where necessary.

Although the hypergraph (43) looks similar to HON in that its
edges can connect to multiple nodes at the same time, it cannot directly
represent dependencies. The reason is that dependencies are ordered
relationships, but in a hypergraph the nodes connected by hyperedges
are unordered. For example, in the shipping example, an edge in
a hypergraph may have the form of set{Tokyo, Busan, Tianjin} —
set{Singapore}, where Tokyo, Busan, and Tianjin are interchangeable
and cannot represent the path of the ship before arriving at Singapore.
On the contrary, the edges in HON have the form of {Tokyo|Busan,
Tianjin} — {Singapore|Tokyo, Busan, Tianjin}, where the entities in
nodes are not interchangeable. Thus, HON can represent dependen-
cies of arbitrary order.

Higher-order dependencies in data revealed by HON

First, we show that HON can correctly extract higher-order dependen-
cies from synthetic data. The synthetic data set has 10,000,000 gener-
ated movements, based on the predefined 10 second-order
dependencies, 10 third-order dependencies, and 10 fourth-order de-
pendencies (see note S1 for details). On this synthetic data with known
variable orders of dependencies, HON (i) correctly captures all 30 of
the higher-order dependencies out of the 400 first-order dependencies,
with variable orders (from second-order to fourth-order) of depen-
dencies mixed in the same data set correctly identified; (ii) does not
extract false dependencies beyond the fourth order even if a maximum
order of five is allowed; and (iii) determines that all other dependen-
cies are first-order, which reflects the fact that there is no other higher-
order dependency in the data.

We then explore higher-order dependencies in real data: the global
shipping data containing ship trajectories among ports, the click-
stream data containing user browsing trajectories among Web pages,
and the retweet data containing information diffusion paths among
users (see note S1 for details). The global shipping data reveal variable
orders of dependencies up to the fifth order, indicating that a ship’s
movement can depend on up to five previous ports that it has visited.
The clickstream data also show variable orders of dependencies up to
the third order, indicating that the page a user will visit can depend on
up to three pages that the user has visited before, matching the obser-
vation in another study on Web user browsing behaviors (14). The
fact that dependencies of variable orders up to the fifth order exist
in real data further justifies our approach of representing variable
and higher-order dependencies instead of imposing a fixed first or sec-
ond order. On the contrary, the retweet data (recording information
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diffusion) show no higher-order dependency at all. The reason is that
in diffusion processes, such as the diffusion of information and the
propagation of epidemics, according to the classic spreading models
(44), once a person A is infected, A will start to broadcast the
information (or spread the disease) to all of its neighbors A/ (A), ir-
respective of who infected A. Because of this Markovian nature of dif-
fusion processes, all diffusion data only show first-order dependencies,
and HON is identical to the first-order network. This also agrees with
a previous finding that assuming second-order dependency has
“marginal consequences for disease spreading” (12).

Improved accuracy on random walking

Because random walking is a commonly used method to simulate
movements on networks and is the foundation of many network anal-
ysis tools, such as PageRank for ranking, MapEquation and Walktrap
for clustering, various link prediction algorithms, and so on, it is crucial
that a naive random walker (only aware of the current node and its out-
edges) can simulate the movements in the network accurately. If differ-
ent network representations are built for the same sequential data set
(consisting of trajectories), how will the network structure affect the
movements of random walkers? Do the random walkers produce tra-
jectories more similar to the real ones when running on HON?

We take the global shipping data to explain the experimental pro-
cedures (the clickstream data have similar results). As illustrated in
Fig. 2A, for every trajectory of a ship, the last three locations are held
for testing, and the others are used to construct the network. A first-
order network (Fig. 2B), a fixed second-order network (12), and a
HON (Fig. 2C) are constructed from the same data set, respectively.
Given one of the networks, for every ship, a random walker simulates
the ship’s movements on the network: it starts from the last location in
the corresponding training trajectory and walks three steps. Then, the
generated trajectories are compared with the ground truth in the test-
ing set: a higher fraction of correct predictions means that the random
walkers can simulate the ship’s movements better on the corre-
sponding network. Random walking simulations in each network
are repeated 1000 times, and the mean accuracies are reported. By
comparing the accuracies of random walking, our intention here is
not to solve a next-location prediction problem (21) or similar classi-
fication problems, but from a network perspective, we focus on im-
proving the representative power of the network, as reflected by the
accuracies of random walking simulations.

The comparison of results among the conventional first-order
network, the fixed second-order network, and HONs with maximum
orders of two to five is shown in Fig. 2D. It is shown that random
walkers running on the conventional first-order network have signif-
icantly lower accuracies compared with other networks. The reason is
that the first-order network representation only accounts for pairwise
connections and cannot capture higher-order dependencies in ships’
movement patterns. For example, a large proportion of ships are going
back and forth between ports (for example, port a and port b in Fig.
2A), which is naturally a higher-order dependency pattern because
each ship’s next step is significantly affected by its previous steps. Such
return patterns are captured by HON (Fig. 2C) but not guaranteed in
a first-order network (Fig. 2B, where ships going from port a to port b
may not return to port a). As shown in Table 1, the probability of a
ship returning to the same port after two steps in a first-order network
(10.7%) is substantially lower than that in HON (above 40%). From
another perspective, in a first-order network, a random walker is given
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Fig. 2. Comparison of random walking accuracies. (A) For the global
shipping data composed of ships’ trajectories, hold the last three steps
of each trajectory for testing and use the rest to build the network. (B and
C) Given a generated shipping network, every ship is simulated by a random
walker, which walks three steps from the last location in the corresponding
training trajectory. The generated trajectories are compared with the ground
truth, and the fraction of correct predictions is the random walking accuracy.
(D) By using HON instead of the first-order network, the accuracy is doubled
when simulating the next step and improved by one magnitude when simu-
lating the next three steps. Note that error bars are too small to be seen (SDs
on HONSs are 0.11 £ 0.02%).

more choices every step and is more “uncertain” in making move-
ments. Such “uncertainty” can be measured by the entropy rate (12, 19),
defined as

Zn

H(Xe|Xe) = (i — j)log p(i — j) (3)

where 7i(i) is the stationary distribution at node 7 and p(i — j) is the
transition probability from node 7 to node j, defined in Eq. 1. The en-
tropy rate measures the number of bits needed to describe every step of
random walking—the more bits needed, the higher the uncertainty. In
Table 1, the first-order network has the highest entropy rate, indicating
that every step of random walking is more uncertain because of the lack
of knowledge of what the previous steps are, which leads to the low ac-
curacy in the simulation of movements.
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Table. 1. Comparing different network representations of the same global shipping data.

Network No. of | No. of | Network ret::z&ablal:‘ttirotfwo retur:::i’:abalzzteyr ‘:Iftree Entropy Clustering Ranking
representation edges | nodes density 9 9 rate (bits) time (min) time (s)
steps steps
Conver(‘)tr'é’:f" first- 1 31028 | 2675 | 43x 107 10.7% 1.5% 3.44 4 13
Fixed second- 4 o o

ordor 116,611 | 19,182 | 32x 10 42.8% 8.0% 145 73 7.7
ng’:l{errns?lxv%m 64914 | 17235 | 22x 107 41.7% 7.3% 146 45 48
Hoorg'ér”;afxt'm:;“ 78415 | 26,577 | 1.1 x 107 45.9% 16.4% 0.90 63 6.2
ng';'e ?’2;‘}’23?‘ 83,480 | 30631 | 89x 10°° 48.9% 18.5% 0.68 67 7.0
Hg:\'d'e?’g’f"m:m 85,025 | 31,854 | 84x107° 49.3% 19.2% 063 68 7.6

By assuming an order of two for the whole network, the accuracies
on the fixed second-order network increase considerably as in Fig. 2D,
because the network structure can help the random walker remember
its last two steps. Meanwhile, the accuracies on HON with a maxi-
mum order of two are comparable and slightly better than the fixed
second-order network, because HON can capture second-order de-
pendencies while avoiding the overfitting caused by splitting all
first-order nodes into second-order nodes. Increasing the maximum
order of HON can further improve the accuracy and lower the entro-
py rate; particularly, ship movements in bigger loops need more steps
of memory and can only be captured with higher orders, as reflected
in Table 1, where the probability of returning in three steps increases
from 7.3 to 16.4% when increasing the maximum order from two to
three in HON. By increasing the maximum order to five, HON can
capture all dependencies below or equal to the fifth order, and the
accuracy of simulating one step on HON doubles that of the
conventional first-order network.

Furthermore, when simulating multiple steps, the advantage of
using HON is even bigger. The reason is that in a first-order network,
a random walker “forgets” where it came from after each step and has
a higher chance of disobeying higher-order movement patterns. This
error is amplified quickly in a few steps—the accuracy of simulating
three steps on the first-order network is almost zero. On the contrary,
in HON, the higher-order nodes and edges can help the random walk-
er remember where it came from and provide the corresponding
probability distributions for the next step. As a consequence, the
simulation of three steps on HON is one magnitude more accurate
than on first-order network. This indicates that, when multiple steps
are simulated (which is usually seen in methods such as PageRank and
MapEquation that need multiple iterations), using HON (instead of
the conventional first-order network) can help random walkers
simulate movements more accurately; thus, the results of all random
walking-based network analysis methods will be more reliable.

Effects on clustering

One important family of network analysis methods is clustering, which
identifies groups of nodes that are tightly connected. A variety of cluster-
ing algorithms, such as MapEquation (38) and Walktrap (39), are based
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on random walking, following the intuition that random walkers are
more likely to move within the same cluster rather than between different
clusters. Because using HON instead of a first-order network alters the
movement patterns of random walkers on the network, a compelling
question becomes: How does HON affect the clustering results?

Consider an important real-world application of clustering: identi-
fying regions wherein aquatic species invasions are likely to happen.
Because the global shipping network is the dominant global vector for
the unintentional translocation of non-native aquatic species (45)
[species get translocated either during ballast water uptake/discharge
or by accumulating on the surfaces of ships (11)], identifying clusters
of ports that are tightly coupled by frequent shipping can reveal ports
that are likely to introduce non-native species to each other. The lim-
itation of the existing approach (10) is that the clustering is based on a
first-order network that only accounts for direct species flows, whereas
in reality the species introduced to a port by a ship may also come
from multiple previous ports at which the ship has stopped because
of partial ballast water exchanges and hull fouling. These indirect spe-
cies introduction pathways driven by ship movements are already cap-
tured by HON and can influence the clustering result. As represented
by the HON example in Fig. 1C, following the most likely shipping
route, species are more likely to be introduced to Los Angeles from
Shanghai (via Singapore) rather than from Tokyo, so the clustering
(driven by random walking) on HON prefers grouping Los Angeles
with Shanghai rather than with Tokyo. In comparison, indirect species
introduction pathways are ignored when performing clustering on a
first-order network (Fig. 1B), thus underestimating the risk of invasions
via indirect shipping connections.

By clustering on HON, the overlap of different clusters is naturally
revealed, highlighting ports that may be invaded by species from
multiple regions. Because there can be multiple nodes representing
the same physical location in HON (for example, both Singapore|
Tokyo and Singapore|Shanghai represent Singapore) and the ship
movements through these nodes can be different, these higher-order
nodes can belong to different clusters, so that Singapore as an inter-
national port belongs to multiple clusters, as one would expect.

The clustering results (using MapEquation) on a first-order net-
work and HON are compared in Fig. 3. For example, let us consider
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Malta, a European island country in the Mediterranean Sea. Malta has
two ports: Valletta is a small port that mainly serves cruise ships in the
Mediterranean, and Malta Freeport, on the contrary, is one of the
busiest ports in Europe (many international shipping routes have a
stop there). The clustering on the first-order network cannot tell the
difference between the two ports and assigns both to the same South-
ern Europe cluster. On the contrary, the clustering on HON effectively
separates Valletta and Malta Freeport by showing that Malta Freeport
belongs to three additional clusters than Valletta, implying long-range
shipping connections and species exchanges with ports all over the
world. In summary, on HON, 45% of ports belong to more than one
cluster, among which the Panama Canal belongs to six clusters, and 44
ports (1.7% of all) belong to as many as five clusters, including inter-
national ports such as New York, Shanghai, Hong Kong, Gibraltar,
Hamburg, and so on, indicating challenges to the management of
aquatic invasions, as well as opportunities for devising targeted man-
agement policies. These insights are gained by adopting HON as the
network representation for the global shipping data, whereas the
MapEquation algorithm is unmodified.

Effects on ranking

Another important family of network analysis methods is ranking.
PageRank (37) is commonly used in assessing the importance of Web
pages by using random walkers (with random resets) to simulate users

© Valletta
© Malta Freeport

O Valletta

@ Malta Freeport

Fig. 3. Clustering of ports on different network representations of the
global shipping data. Ports tightly coupled by frequent shipping in a
cluster are likely to introduce non-native species to each other. MapEqua-
tion (38) is used for clustering, and different colors represent different
clusters. (A) Clustering on the first-order network. Although Valletta and
Malta Freeport are local and international ports, respectively, the clustering
result does not distinguish the two. (B) Clustering on HON. The overlapping
clusters indicate how international ports (such as Malta Freeport) may suf-
fer from species invasions from multiple sources.
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clicking through different pages, and pages with higher PageRank
scores have higher chances of being visited. It has been shown that Web
users are not Markovian (14), and PageRank on the conventional net-
work representation fails to simulate real user traffic (46). Because HON
can help random walkers achieve higher accuracies in reproducing
movement patterns, how can HON affect the PageRank scores, and why?

With the clickstream data, we can construct both a first-order
network and a HON as the input for PageRank. In HON, the PageRank
scores of multiple higher-order nodes representing the same Web page
are summed up as the final score for the page. As shown in Fig. 4, by
using HON instead of the first-order network, 26% of the Web pages
show more than 10% of relative changes in ranking; more than 90% of
the Web pages lose PageRank scores, whereas the other pages show
remarkable gains in scores. To have an idea of the changes, we list the
Web pages that gain or lose the most scores by using HON as the
input to PageRank, as shown in table S1. Of the 15 Web pages that
gain the most scores from HON, 6 are weather forecasts and 4 are
obituaries, as one would expect considering that this data set is from
Web sites of local newspapers and TVs. Of the 15 Web pages that lose
the most scores, 3 are the lists of news personnel under the “about”
page, which a normal reader will rarely visit, but are overvalued by
ranking on the first-order network.

To further understand how the structural differences of HON and
the first-order network lead to changes in PageRank scores, we choose
Web pages that show significant changes in ranking and compare the
corresponding subgraphs of the two network representations. A typical
example is a pair of pages, PHOTOS: January 17th snow - WDBJ7 /
news and View/Upload your snow photos - WDBJ7 / news—these two
pages gain 131 and 231% PageRank scores, respectively, on HON. In
the first-order network representation, as shown in Fig. 5A, where
edge widths indicate the transition probabilities between Web pages,
it appears that after viewing or uploading the snow photos, a user is
very likely to go back to the WDBJ7 home page immediately. How-
ever, in reality, once a user views and uploads a photo, the user is
likely to repeat this process to upload more photos while less likely
to go back to the home page. This natural scenario is completely
ignored in the first-order network but captured by HON, indicated by
the strong loop between the two higher-order nodes (Fig. 5B). The
example also shows how the higher probability of returning after
two (or more) steps on HON can affect the ranking results. Again,
all these insights are gained by using HON instead of the conventional
first-order network, without any change to the PageRank algorithm.
Besides the ranking of Web pages, HON may also influence many
other applications of ranking, such as citation ranking and key phrase
extraction.

Scalability of HON

We further show the scalability of HON, derived from its compact
representation. In previous research (where a fixed second order is as-
sumed for the network), from Table 1, it is shown that the network is
considerably larger than the conventional first-order network, and
assuming a fixed order beyond the second order becomes impractical
because “higher-order Markov models are more complex” (12), due to
combinatorial explosion. A network that is too large is computationally
expensive to perform further analysis upon. On the contrary, although
HON with maximum order of two has comparable accuracies in terms
of random walking movement simulation, it has less nodes and about
half the number of edges compared with a fixed second-order network,
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Fig. 4. Change of Web page rankings by using HON instead of first-
order network. PageRank (37) is used for ranking. Twenty-six percent of
the pages show more than 10% of relative changes in ranking. More than
90% of the Web pages lose PageRank scores, whereas the other pages
show remarkable gain in scores. Note that log-log scale is used in the fig-
ure, so a deviation from the diagonal indicates a significant change of the
PageRank score.

A First-order network

View photo Upload photo

WDBJ7 home

Other pages

B HON
View photo|Upload photo

View photo

WDBJ7 home

Other pages

Fig. 5. Comparison of different network representations for the
same clickstream data. Edge widths indicate the transition probabilities.
(A) First-order network representation, indicating that a user is likely to go
back to the home page after viewing or uploading snow photos. (B) HON
representation, which not only preserves the information in the first-order
network but also uses higher-order nodes and edges to represent an ad-
ditional scenario: once a user views and uploads a photo, the user is likely
to repeat this process to upload more photos and is less likely to go back
to the home page. Consequently, these photo viewing and uploading
pages will receive higher PageRank scores (37) because the implicit random
walkers of PageRank are more likely to be trapped in the loop of the higher-
order nodes.
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because it uses the first order whenever possible and embeds second-
order dependencies only when necessary. Even when increasing the
maximum order to five, HON still has less edges than the fixed
second-order network, whereas all the useful dependencies up to
the fifth order are incorporated in the network, resulting in consider-
ably higher accuracies on random walking simulations.

Another important advantage of HON over a fixed-order network
is that network analysis algorithms can run faster on HON because of
HON’s compact representation. In addition, HON is sparser than the
fixed-order representation, and many network toolkits are optimized for
sparse networks. Table 1 shows the running time of two typical
network analysis tasks: ranking [with PageRank (37)] and clustering
[with MapEquation (38)]. Compared with the fixed second-order
network, these tasks run almost two times faster on HON with a max-
imum order of two and about the same speed on HON with a max-
imum order of five (which embeds more higher-order dependencies
and is more accurate).

It is worth noting that the number of additional nodes/edges
needed for HON (on top of a first-order network) is determined by
the number of higher-order dependencies in the data and that addi-
tional size is affected neither by the size of the raw data nor by the
density of the corresponding first-order network. For example, even
if the first-order network representation of a data set is a complete
graph with 1 million nodes, if 100 second-order dependencies exist
in the data, HON needs only 100 additional auxiliary second-order
nodes on top of the first-order network, rather than making the whole
network the second order. Thus, the advantage of HON is being able
to effectively represent higher-order dependencies, while being
compact by trimming redundant higher-order connections.

DISCUSSION

We have shown that for sequential data with higher-order dependen-
cies, the conventional first-order network fails to represent such
dependency patterns in the network structure, and the fixed second-
order dependency can become limiting. If the network representation
is not truly representative of the original data, then it will invariably
lead to unreliable conclusions or insights from network analyses. We
develop a new process for extracting higher-order dependencies in the
raw data and for building a network (the HON) that can represent
such higher-order dependencies. We demonstrate that our novel
network representation is more accurate in representing the true
movement patterns in data in comparison with the conventional
first-order network or the fixed second-order network: for example,
when using HON instead of a first-order network to represent the
global shipping data, the accuracy is doubled when simulating a ship’s
next movement on the network and is higher by one magnitude when
simulating three steps, because the higher-order nodes and edges in
HON can provide more detailed guidance for simulated movements.
Besides improved accuracy, HON is more compact than fixed-order
networks by embedding higher-order dependencies only when neces-
sary, and thus, network analysis algorithms run faster on HON.
Furthermore, we show that using HON instead of conventional
network representations can influence the results of network analysis
methods that are based on random walking. For example, on HON,
the clustering of ports takes indirect shipborne species introduction
pathways into account and naturally produces overlapping clusters
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that indicate multiple sources of species invasion for international
ports; the ranking of Web pages is corrected by incorporating the
higher-order patterns of users’ browsing behaviors such as uploading
multiple photos. Our work has the potential to influence a wide range
of applications, such as improving PageRank for the task of un-
supervised key phrase selection in language processing (47), because
the proposed network representation is consistent with the input
expected by various network analysis methods. Because nodes could
be split into multiple ones in HON, it may require postprocessing to
aggregate the results for interpretation. In the current method, the
choice of parameters may influence the structure of the resulting
network, so we provide parameter discussions in note S3.

In future work, we look forward to (i) extending the applications of
HON beyond the simulation of movements to more dynamic processes
such as dynamic network anomaly detection (48), and (ii) improving
the algorithm by reducing the parameters needed.

MATERIALS AND METHODS

The construction of the HON consists of two steps: rule extraction
identifies higher-order dependencies that have sufficient support
and can significantly alter a random walker’s probability distribution
of choosing the next step; then, network wiring adds these rules de-
scribing variable orders of dependencies into the conventional first-
order network by adding higher-order nodes and rewiring edges.
The data structure of the resulting network is consistent with the
conventional network representation, so existing network analysis
methods can be applied directly without being modified. We use
global shipping traffic data as a working example to demonstrate
the construction of HON, but it is generalizable to any sequential data.

Rule extraction
The challenge of rule extraction is to identify the appropriate orders of
dependencies in data; when building the first-order network, this step
is often ignored by simply counting pairwise connections in the data.
We define a path as the movement from source node A to target node
B, though with nodes that differ from those in a conventional network:
a node here can represent a sequence of entities, no longer necessarily
a single entity. Then, among those paths, given a source node A con-
taining a sequence of entities [a;, ds,..., ai, if including an additional
entity g, at the beginning of A can significantly alter the normalized counts
of movements (as probability distribution) to target nodes set {B}, it
means {B} has a higher-order dependency on Ay = [ap, a1, ay,..., 4,
and paths containing higher-order dependencies like A.,;, — B are
defined as rules. Then, a rule like Freq([ay, a;] — a,) = 50 can
map to an edge in the network in the form of a,|a, — a, with edge
weight 50. What are the expectations for the rule extraction process?

First, rules should represent dependencies that are significant. As in
fig. S1 (step 3), if the probability distribution of a ship’s next step from
Singapore is significantly affected by knowing that the ship came from
Shanghai to Singapore, there is at least second-order dependency here.
On the contrary, if the probability distribution of going to the next
port is the same no matter how the ship reached Singapore, there is
no evidence for second-order dependency (but third- or higher-order
dependencies may still exist and can be checked similarly).

Second, rules should have sufficient support. Only when some pat-
tern happens sufficiently many times can it be considered as a “rule”
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rather than some random event. Although this requirement of mini-
mum support is not compulsory, not specifying a minimum support
will result in a larger and more detailed network representation, and
more infrequent routes are falsely considered as patterns, ultimately
lowering the accuracy of the representation (see the discussions of
parameters in note S3).

Third, rules should be able to represent variable orders of depen-
dencies. In real-world data, such as the global shipping data, different
paths can have different orders of dependencies; for example, in Fig.
1D, the next step from Singapore is dependent on Tianjin through the
fourth-order path Tianjin — Busan — Tokyo — Singapore, as well as
on Shanghai through the second-order path Shanghai — Singapore.
When variable orders can coexist in the same data set, the rule extrac-
tion algorithm should not assign a fixed order to the data but should
be able to yield rules representing variable orders of dependencies.

Following the aforementioned three objectives of rule extraction, it
is natural to grow rules incrementally: start with a first-order path, try
to increase the order by including one more previous step, and check
if the probability distribution for the next step changes significantly
(fig. S1, step 3). If the change is significant, the higher order is as-
sumed; otherwise, keep the old assumption of order. This rule-growing
process is iterated recursively until (i) the minimum support require-
ment is not met or (i) the maximum order is exceeded. The detailed
algorithm is given in note S2.

Network wiring

The remaining task is to convert the rules obtained from the last step
into a graph representation. It is trivial for building conventional first-
order networks because every rule is first-order and can directly map
to an edge connecting two entities, but such direct conversion will not
work when rules representing variable orders of dependencies coexist.
The reason is that during rule extraction, only the last entity of every
path is taken as the target node, so that every edge points to a first-
order node, which means higher-order nodes will not have in-edges.
Rewiring is needed to ensure that higher-order nodes will have incom-
ing edges, while preserving the sum of edge weights in the network.
The detailed steps are illustrated as follows:

1. Converting all first-order rules into edges. This step is exactly the
same as constructing a first-order network, where every first-order
rule (a path from one entity to another) corresponds to a weighted
edge. As illustrated in fig. S2A, Shanghai — Singapore is added to
the network.

2. Converting higher-order rules. In this step, higher-order rules are
converted to higher-order edges pointing out from higher-order nodes
(the nodes are created if they do not already exist in the network).
Figure S2B shows the conversion of rules Singapore|Shanghai —
Los Angeles and Singapore|Shanghai — Seattle, where the second-
order node Singapore|Shanghai is created and two edges pointing
out from the node are added.

3. Rewiring in-edges for higher-order nodes. This step preserves
the sum of edge weights while solving the problem that higher-order
nodes have no incoming edges, by pointing existing edges to higher-
order nodes. When adding the second-order node Singapore|Shanghai,
a lower-order rule and the corresponding edge Shanghai — Singapore
are guaranteed to exist, because during rule extraction when a rule is
added, all preceding steps of the path are also added, as in ADDTORULES
in algorithm S1. As shown in fig. S2C, the edge from Shanghai to
Singapore is redirected to Singapore|Shanghai. Converting higher-order
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rules (step 2) and rewiring (step 3) are repeated for all rules of first
order, then second order, and likewise up to the maximum order, to
guarantee that edges can connect to nodes with the highest possible
orders. This step also implies that any two nodes that represent the same
physical location will not have incoming edges from the same node.

4. Rewiring edges built from Valid rules. This step, after represent-
ing all rules as edges in HON, is necessary due to the fact that the rule
extraction step takes only the last entity of paths as targets, such that
edges built from Valid rules in algorithm S1 always point to first-order
nodes. In fig. S2D, the node Singapore|Shanghai was pointing to a
first-order node Seattle. However, if a node of higher order, Seattle|
Singapore, already exists in the network, the edge Singapore|Shanghai —
Seattle should point to Seattle|Singapore; otherwise, the information
about previous steps is lost. To preserve as much information as pos-
sible, the edges built from Valid rules should point to nodes with the
highest possible orders.

Following the above process, the algorithm for network wiring is
given in algorithm S2 in note S2, along with more detailed explana-
tions. Given a set of parameters, the result of HON is unique, so there
is no optimization or greedy methods for the algorithm. Note that we
have made the entire source code available as well (at https://github.
com/xyjprc/hon).

Comparison with related methods
Although VOM models can be used on sequential data to learn a
VOM tree (22-24) for predictions (49), our goal is to build a more
accurate network representation that captures higher-order dependen-
cies in the data. Although these two objectives are related, there are
several key differences: (i) a VOM tree contains probabilities that
are unnecessary (for example, nodes that are not leaves) for represent-
ing higher-order dependencies in a network; (ii) additional conditional
probabilities are needed to connect nodes with different orders in
HON, which are not guaranteed to exist in a pruned VOM tree;
and (iii) VOM usually contains lots of unnecessary edges because of
the “smoothing” process for the unobserved data, which is not desired
for a network representation. Therefore, our work is not simply con-
tained in a VOM implementation. Note S4 elaborates the differences
and provides an empirical comparison between the HON and VOM.
Although a fixed kth-order Markov model can be directly
converted to a first-order model (12), the state space S* grows expo-
nentially with the order. There has been plenty of research on Markov
order estimation to determine the order k, such as using different
information criteria (26, 27), cross-validation (14), and surrogate data
(28), but these approaches produce a single global order for the model
rather than variable orders, and no discussion was given to network
representation. Other Markov-related works, such as hidden Markov
model (25), frequent pattern mining (20), and next-location prediction
(21) focus more on the stochastic process, rather than the network
representation problem. For example, the hidden states in hidden
Markov model do not represent clear dependency relationships like
the higher-order nodes do in HON, and we are not learning a hidden
layer that have “emission probabilities” to observations. From the
network perspective, although there have been efforts to incorporate
HON structures for clustering (34, 35), ranking (36), and so on, these
methods are modifications of existing algorithms and are application-
specific; instead, we embed higher-order dependencies into the network
structure, so that the wide range of existing network analysis tools can
be applied without modification.

Xu, Wickramarathne, Chawla Sci. Adv. 2016;2:e1600028 20 May 2016

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
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note S1. Data sets.

note S2. Algorithms.

note S3. Parameter discussion.

note S4. Empirical comparison with the VOM model.

fig. S1. Rule extraction example for the global shipping data.

fig. S2. Network wiring example for the global shipping data.

fig. S3. Parameter sensitivity of HON in terms of accuracy and network size.

fig. S4. Comparison between the HON and the VOM model.

table S1. Changes of PageRank scores by using HON instead of a first-order network.
table S2. Comparison of the number of rules extracted from HON and VOM.
algorithm S1. The rule extraction algorithm.

algorithm S2. The network wiring algorithm.
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