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ABSTRACT
The unintentional transport of invasive species (i.e., non-
native and harmful species that adversely affect habitats
and native species) through the Global Shipping Network
(GSN) causes substantial losses to social and economic wel-
fare (e.g., annual losses due to ship-borne invasions in the
Laurentian Great Lakes is estimated to be as high as USD
800 million). Despite the huge negative impacts, manage-
ment of such invasions remains challenging because of the
complex processes that lead to species transport and es-
tablishment. Numerous difficulties associated with quan-
titative risk assessments (e.g., inadequate characterizations
of invasion processes, lack of crucial data, large uncertain-
ties associated with available data, etc.) have hampered the
usefulness of such estimates in the task of supporting the
authorities who are battling to manage invasions with lim-
ited resources. We present here an approach for addressing
the problem at hand via creative use of computational tech-
niques and multiple data sources, thus illustrating how data
mining can be used for solving crucial, yet very complex
problems towards social good. By modeling implicit species
exchanges as a network that we refer to as the Species Flow
Network (SFN), large-scale species flow dynamics are stud-
ied via a graph clustering approach that decomposes the SFN
into clusters of ports and inter-cluster connections. We then
exploit this decomposition to discover crucial knowledge on
how patterns in GSN affect aquatic invasions, and then illus-
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trate how such knowledge can be used to devise effective and
economical invasive species management strategies. By ex-
perimenting on actual GSN traffic data for years 1997–2006,
we have discovered crucial knowledge that can significantly
aid the management authorities.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Clustering; H.2.8 [Database
Management]: Database Applications—Data mining

Keywords
Data mining, networks, clustering, risk assessment, invasive
species, data mining for social good

1. INTRODUCTION

Background. Networks of human travel and trade trans-
port different plants, animals and pathogens across the globe.
Quoting from the National Invasive Species Council’s 2008–
2012 National Management Plan [6],

“Human activity such as trade, travel and tourism
have all increased substantially, increasing the
speed and volume of species movement to un-
precedented levels. Invasive species are often un-
intended hitchhikers on cargo and other trade con-
veyances, (Page 4).” [6]

Invasive species (i.e., non-native species that adversely af-
fect habitats and bioregions) are among the top three drivers
of global environmental change. Such invasive species in-
clude both plants and animals, and cause substantial eco-
nomic and environmental harm by outcompeting or preying
on native species. For instance, the impacts of aquatic inva-
sions include increased diseases in humans (e.g., cholera)
and aquaculture species (e.g., fish virus), losses of wild-
caught fisheries (e.g, comb jelly invasion of the Black Sea),
and losses of other ecosystem services. From an economic
perspective, the estimated annual damage and control costs



of invasive species in the U.S. alone amount to more than
USD 120 billion [19]. These species are introduced via the
networks of human trade and travel, and analyzing these
networks can illuminate potential management strategies,
regulatory policies, incentive structures, and risks from chang-
ing climate.

Ship-borne invasive species problem. The Global Ship-
ping Network (GSN) is the dominant global vector for un-
intentional translocation of non-native aquatic species [17]:
species get translocated via ballast water (during ballast wa-
ter uptake/discharge) and biofouling (i.e., the accumulation
of microorganisms, plants, algae, or animals) on the sur-
faces of ships [8]. To reduce invasion risks, authorities (e.g.,
International Maritime Organization (IMO)) have proposed
standards for the maximum density of organisms that can
be discharged in ships’ ballast water. These standards are
based on the premise that reducing the concentration of live
organisms in ballast tanks will reduce the number of inva-
sions, but the extent to which this approach will actually
reduce the invasion risk is unknown. In addition, this ap-
proach does not address invasions via biofouling, nor does
it consider many poorly known, but likely significant, bi-
ological and ecological factors that influence invasion risk.
Moreover, the problem cannot be understood at a regional
level, because ship-borne species can arrive from anywhere
via the GSN. With all these uncertainties in place, decisions
are still needed to be made about the most efficient ways to
target limited management resources.

Significance of the problem. In the few coastal areas
with good invasive species monitoring, increased shipping
connecting an expanding network of global ports is corre-
lated with an accelerating accumulation curve of established
species (e.g., San Francisco Bay), and is estimated to be re-
sponsible for 69% of known aquatic invasions [17]. Although
only a portion of species transported via GSN become inva-
sive (i.e., spread, become abundant, and cause harm), en-
vironmental and economic damages from these species are
often large and increase over time [13, 15]. For instance,
the annual loss to the US Great Lakes regional economy
due to ship-borne aquatic invasive species may be as high
as USD 800 million [22]. However, GSN undoubtedly pro-
vides enormous benefits to the US economy, and is also re-
sponsible for approximately 90% of global trade. Further-
more, global trade patterns are optimized based on economic
and trade considerations, but not necessarily to safeguard
against aquatic invasions. Therefore, imposing expensive
and cumbersome regulations on the shipping industry could
cause serious adverse effects to a country’s economy and
trade relationships.

Motivation and Goals. It is clear that a thorough under-
standing of ship-borne invasion risks in terms of overall data
about trade patterns, ports, vessel types, etc. is necessary
to devise practices and policies that are feasible, effective
and capable of bringing to bear the net long-term benefits
to human welfare. With this motivation, our goal is to de-
velop computational and data-driven frameworks that can
inform invasive species management policies and practices.

1.1 Data Mining for Social Good
Ship-borne invasions are a result of a complex interplay

of ship traffic, ballast uptake/discharge dynamics, species
survival during transport, various environmental/biological
variables, etc [28]. Incorporating these complexities into a
quantitative risk assessment framework is extremely diffi-
cult, since the majority of the governing relationships are
poorly quantified. The few studies that have attempted to
quantify invasion risks via probabilistic approaches [14, 24]
have relied on multiple simplifying assumptions. Moreover,
usefulness of these approaches towards development of ef-
ficient invasion management policies is further hampered
by the inability to incorporate crucial invasion mechanisms
(e.g., “stepping-stone” process) into risk assessment. How-
ever, numerous streams of data that capture vessel move-
ment patterns, ballast uptake/discharge and other environ-
mental/biological factors (that affect species transport and
establishment) are increasingly being collected by several
agencies for research/commercial purposes. Therefore, one
can creatively combine domain expertise and computational
data analysis to understand the underlying patterns of ship-
borne invasions in order to develop a sufficient understand-
ing towards the development of effective and economical
management strategies. Our work is in fact a multi-disciplinary
attempt towards utilizing this data to create insights and
knowledge that can eventually lead to decision-making tools
for policy makers.

Data. We now introduce the numerous data sources utilized
for the research

(i) Vessel movement data: made available by Lloyd’s
Maritime Intelligence Unit (LMIU) contains travel in-
formation for vessels such as portID, sail_date and
arrival_date, along with vessel metadata, such as
vessel_type and DWT (Dead Weight Tonnage), etc.
This information can be readily used to build a network
to represent species flow paths and patterns among
ports. Our experiments are based on LMIU data that
spans four (4) two-years-long periods starting 1st of
May 1997, 1999, 2002 and 2005, totaling 6, 889, 748
individual voyages corresponding to a total of 50, 487
vessels of various types that move among a total of
5, 545 ports and regions. However, none of the exist-
ing vessel movement datasets (including LMIU) pro-
vide explicit ballast water exchange amounts (or even
whether a vessel discharged ballast water).

(ii) Ballast discharge data: made available by the Na-
tional Ballast Information Clearinghouse (NBIC) con-
tains the date and discharge_volume of all ships visit-
ing U.S. ports from Jan. 2004 to present. As suggested
in [24], NBIC data can be used to estimate an average
ballast discharge based on vessel_type and DWT using
a linear regression model.

(iii) Ecoregion data: are available via Marine Ecoregions
of the World [26] and the Freshwater Ecoregions of
the World [1], where ecoregions are defined by species
composition and shared evolutionary history [26], and
are thereby capable of providing an index of native
ranges. Therefore, these definitions can be used for
more realistic and qualitative invasion risk analysis,
in comparison to, for example, geographic distance as
used in [24].



(iv) Environmental data: on port temperature and salin-
ity (i.e., the two most crucial variables for identify-
ing survivability of species in non-native coastal en-
vironments) are available via Global Ports Database
(GPD) [14]. These estimates can be used for calculat-
ing species establishment risk based on environmental
similarity; the missing values in GPD can also be sup-
plemented via estimates from the World Ocean Atlas
2009 [2, 16] when necessary.

Problem Statement. Given the complexity of the prob-
lem and lack of relationships that are required for robust
risk assessment, we set forth to extract knowledge on large-
scale patterns of GSN in order to obtain better insight to-
wards ship-borne invasions of non-indigenous species. Fur-
thermore, we will illustrate how such knowledge can be used
to derive efficient invasion management strategies.

Framework. Our method is devised to tackle the limita-
tions due to lack of data and governing relationships that are
required for quantitative risk assessment. Towards this, we
take the following approach: (i) a network that represents
the general species flow tendency among ports is built; then,
utilizing a graph clustering method [21] that operates on the
basis of flow-dynamics, (ii) a map [12,27] of the species flow
network, i.e., a cogent representation that extracts the main
structure of flow while retaining information about relation-
ships among modules (of main structure), is built; finally,
using this map that summarizes the species flow dynam-
ics in terms of clusters (or groups) of ports and highlights
inter-cluster (i.e., between clusters) and intra-cluster (i.e.,
within cluster) relationships, (iii) the impact of GSN dy-
namics on aquatic invasions is studied in conjunction with
ecological and environmental aspects that govern species es-
tablishment.

Risk 
Assesments

Ecoregion Data

Ballast Discharge 
Data

Vessel Movement 
Patterns Species 

Flow 
Network

Cluster 
Analysis

Invasion 
Risk 

NetworkEnvironmental 
Data

Figure 1: A concept diagram illustrating the integration of
multiple data sources, modeling and data mining techniques for
extracting useful knowledge.

1.2 Contributions and Broader Impact
We provide a data-driven foundation for more effective

and efficient risk assessment and management by modeling
the spread of aquatic non-indigenous species through the
GSN, which is the most important vector of aquatic inva-
sions. We have discovered vital information on patterns of
GSN that can inform management strategies and regulatory
policies. In a potential deployed configuration (see Fig. 2),
the discovered knowledge can efficiently be used to analyze
the invasion risks with respect to changing climate, policy
and infrastructure. Understanding the structure of the com-
ponent networks and the dynamic interactions between the

different networks is crucial to the design of policies that
could cost-effectively reduce invasions.
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Figure 2: Use of discovered knowledge in a potential
deployed setting for invasion risk assessment with respect to
changing climate, policy and infrastructure.

This paper is organized as follows: Section 2 presents the
formulation of species flow networks using LMIU and NBIC
data, graph clustering approach for understanding the large-
scale dynamics of GSN, and the main discoveries; Section 3
presents invasion risk assessment that incorporates ecore-
gion definitions and environmental conditions via a unique
graphical approach; Section 4 presents how the emerging
knowledge and methods can be potentially deployed towards
development of species management strategies; and finally,
Section 5 contains the concluding remarks.

2. SPECIES FLOW ANALYSIS
The basic idea behind our work is to find patterns of

species flow in order to identify ports and shipping routes for
which interventions would be the most effective in stopping
invasions through the entire network. Such knowledge can
then be further leveraged with auxiliary information (e.g.,
vessel types) in order to inform management strategies in a
targeted manner. Since GSN naturally forms a graph, LMIU
and NBIC data can be utilized to build a network to rep-
resent species flow among ports (see Fig. 3). This network
can then be analyzed via graph mining or network science
techniques to extract relevant insights.

2.1 Species Flow Network (SFN)
Let G ≡ (N , E) be a directed weighted graph, where
N ≡ {n1, . . . , nn} and E ⊂ N × N denote the set of nodes
and edges of G, respectively. Let the nodes in N corre-
spond to ports visited by vessels in the GSN and the weight
of the directed edge eij ∈ E given by wij ∈ (0, 1] repre-
sents the total probability of species flow corresponding to
all vessels traveling from port ni to nj (without intermedi-
ate stopovers), for all ni, nj ∈ N .

Species Flow Estimation. Estimation of exact amounts
of species exchanged between ports is extremely difficult.
However, as proposed in [24], vessel movement and ballast
discharge data can be leveraged to estimate the likelihood
of species exchange. We now briefly explain how LMIU and
NBIC datasets are used to estimate species flow (i.e., the
edge weights of G) and refer the interested reader to [24]
for a comprehensive discussion on probabilistic species flow



Figure 3: Species flow between ports corresponding to
vessel movements given in the LMIU 2005–2006 dataset.
The edges represent the aggregated species flow between ports,
where the color intensity is proportional to the magnitude of
flow. Approximately 2300 paths with the highest species flow
are shown.

modeling including details on model assumptions, develop-
ment and validation.

(a) Calculation of edge weights: Consider a vessel v trav-

eling from port ni to nj in ∆t
(v)
ij time (without inter-

mediate stopovers), during which the species in ballast
water may die at a mortality rate of µ (is set to a con-
stant average of 0.02/day for all routes r and vessel

types). In addition, let D
(v)
ij , ρ

(v)
ij ∈ [0, 1] and λ de-

note the amount of ballast water discharged by vessel
v at nj , the efficacy of ballast water management for
v for the route ni → nj , and the characteristic con-
stant of discharge, respectively. Then, the probability
of vessel v introducing species from ni to nj (without
intermediate stopovers) is given by:

p
(v)
ij = ρ

(v)
ij (1− e−λD

(v)
ij ) e−µ∆t

(v)
ij ; (1)

the weight of the edge eij is taken to be the total prob-
ability of species introduction for all vessels traveling
from ni to nj , and is given by:

wij = 1−
∏
r∈DB

r=v:ni→nj

(1− p(v)
ij ), (2)

where the product is taken over all routes r in LMIU
database DB s.t. a vessel v travels from port ni to nj .

(b) Estimation of ballast discharge: Information avail-
able on ballast discharge are incomplete, where estima-
tion of exact quantities exchanged for each and every
ship route r is impossible for most ports of the world:
(i) ballast discharges in ports are not recorded globally,
and are known to differ significantly by port and ship
type; (ii) vessels may have intermediate stopovers,
thus exchanging and mixing ballast water with exist-
ing water in ballast tanks; and (iii) data are largely
unavailable for offshore discharges. Therefore, in or-
der to mitigate the above difficulties, ballast discharge
is estimated based on linear regression models on DWT

per vessel_type as in [24]. Specifically, linear regres-
sion models on DWT for vessels of type Bulk Dry, Gen-
eral Cargo, Ro-Ro Cargo, Chemical, Liquified Gas

Tankers, Oil Tankers, Passenger Vessels, Refrig-
erated Cargo, Container Ships and Unknown/Other).
Furthermore, the relationship of ballast discharge amount

to the likelihood of species introduction is not well de-

fined. For estimation of (1), λ is chosen s.t. p
(v)
ij = 0.80

for a ballast discharge of 500, 000m3, when ρ
(v)
ij = 1

and ∆t
(v)
ij = 0, i.e., a discharge volume of 500, 000m3

has a probability of 0.8 of introducing species if the
vessel travels with zero mortalities and has no ballast
management strategies in place.

Characteristics of the SFN. Summary of characteristics
for SFNs generated for the four available years of data are
shown in Table 1. The path length of a network identifies the
number of stops required to reach a given port from another.
An average path length of three (3) is observed in all four
SFNs. This is perhaps mainly due to the presence of hubs
(i.e., ports that are connected to many other ports) in GSN
(e.g., Singapore). The in-/out-degree of a node is defined as
the number of other nodes connected to/by it. Therefore,
average degree in SFN describes the average number of direct
pathways of species introduction. Furthermore, as empirical
evaluations for power law degree distribution [5] suggest that
SFNs fall under the category of scale-free networks [3], for
degree ≥139.

Table 1: Characteristics of Species Flow Networks

Feature 97–98 99–00 02–03 05–06

Number of nodes 3971 4045 4264 4250

Number of edges 150479 150150 143560 145199

Average path length 2.987 2.998 3.018 3.041

Average in/out- degree 37.9 37.1 33.7 34.2

Diameter 8 7 7 9

Density 0.010 0.009 0.008 0.008

2.2 Clustering Analysis of SFN
Complex networks are efficient abstractions for highly com-

plex systems that consist of numerous, often complex under-
lying patterns and relationships. However, these abstrac-
tions still remain too complex to derive useful inferences.
Therefore, a decomposition that represents such complex
networks via modules and their interactions [10, 18, 23] can
be very useful in understanding the underlying patterns. We
utilize a graph clustering approach in order to simplify the
underlying flow dynamics of SFN. The clusters can capture
the ship movement activity among ports leading to a better
identification of risk corridors, which can then be used to es-
timate invasion risk based on ecological and environmental
conditions.

Choice of Clustering Method. For the task at hand, we
are interested in understanding how the structure of SFN re-
lates to species flow across the network. Therefore, among
many alternatives, MapEquation [21]—a graph clustering
method that attempts to decompose the network with re-
spect to flow-dynamics (in comparison to optimization of
modularity)—is used. The basic principle of operation be-
hind MapEquation-based clustering stems from the notions
of information theory, which states the fact that a data
stream can be compressed by a code that exploits regulari-
ties in the process that generates the stream [25]. Therefore,
a group of nodes among which information flows quickly
and easily can be aggregated and described as a single well
connected module; the links between modules capture the
avenues of information flow between those modules. MapE-



Table 2: Ports that remained in the same cluster for the duration of 1997–2006

Pacific Mediterranean W. European E. North America Indian Ocean South America

%TP=28.33%, #P=818 %TP=15.61%, #P=513 %TP=15.37%, #P=1117 %TP=9.31%, #P=363 %TP=6.12%, #P=137 %TP=3.41%, #P=80

Port name %TF %CF Port name %TF %CF Port name %TF %CF Port name %TF %CF Port name %TF %CF Port name %TF %CF

Singapore 2.82 9.96 Gibraltar 2.56 16.37 Rotterdam 0.87 5.68 Houston 0.52 5.57 Jebel Ali 0.25 4.07 Santos 0.42 12.37

Hong Kong 0.68 2.41 Tarifa 0.86 5.54 Skaw 0.60 3.93 New Orleans 0.37 3.94 Ras Tanura 0.22 3.67 Tubarao 0.33 9.70

Kaohsiung 0.58 2.05 Port Said 0.84 5.38 Antwerp 0.55 3.59 New York 0.35 3.80 Mumbai 0.20 3.29 San Lorenzo∗ 0.33 9.57

Port Hedland 0.52 1.83 Suez 0.48 3.09 Brunsbuttel 0.44 2.85 Baltimore 0.23 2.42 Juaymah Term. 0.19 3.12 Paranagua 0.21 6.11

Busan 0.50 1.76 Barcelona 0.29 1.83 Hamburg 0.42 2.76 Port Arthur 0.21 2.28 Kharg Is. 0.18 2.91 Rio de Janeiro 0.15 4.45

Hay point 0.49 1.72 Venice 0.24 1.52 Amsterdam 0.31 2.02 Santa Marta 0.20 2.17 Jubail 0.17 2.76 Bahia Blanca 0.15 4.31

Newcastle∗∗ 0.48 1.71 Genoa 0.23 1.47 Immingham 0.28 1.83 Tampa 0.20 2.16 New Mangalore 0.15 2.50 Rosario 0.14 4.07

Gladstone 0.47 1.67 Piraeus 0.22 1.39 St. Petersburg 0.27 1.73 Port Everglades 0.20 2.13 Mesaieed 0.13 2.08 Sepetiba 0.12 3.60

Nagoya 0.46 1.61 Leghorn 0.21 1.32 Tees 0.22 1.41 Mobile 0.19 2.04 Bandar Abbas 0.12 2.03 Rio Grande∗∗∗ 0.12 3.59

Incheon 0.45 1.60 Augusta 0.20 1.26 Zeebrugge 0.21 1.36 Savannah 0.18 1.95 Jebel Dhanna Term. 0.12 1.95 Praia Mole 0.12 3.50

Ports corresponding to highest %TF:=percentage flow w.r.t. total flow and %CF:=percentage flow w.r.t. flow within cluster are shown for six
major clusters; for each cluster, the aggregated %TF:=percentage flow in the cluster w.r.t. total flow and number of ports in the cluster are
given in the first row of table. Here, San Lorenzo∗:=San Lorenzo, Argentina; Newcastle∗∗:=Newcastle, Australia; Rio Grande∗∗∗:=Rio Grande,
Brazil.

quation identifies clusters by optimizing the entropy corre-
sponding to intra- and inter-cluster in a recursive manner—
the clusters identified cannot be further refined or parti-
tioned.

Clusters of Ports based on Species Flow. Cluster-
ing analysis of SFN reveals several clusters of ports. These
clusters represent groups of ports among which the species
exchange is relatively higher; if inter-cluster pathways are
controlled, species flow would be combinatorially reduced.
Once such clusters are identified, species flow characteristics
within clusters can be analyzed in conjunction with ecolog-
ical and environmental data for invasion risk assessment.
While clustering is derived based on species flow dynamics,
geographical orientation of the major (in terms of aggre-
gated flow) clusters is also intuitive (see Fig. 4). A few ma-
jor clusters correspond to a significant proportion of total
species flow among ports (see Table 2 for major ports that
are in 6 of these major clusters). For instance, in 2005–2006,
six (6) major clusters (out of 64 in total), viz., the clus-
ters of Pacific, Mediterranean, Western_Europe, East-

ern_North_America, Indian_Ocean and South_America con-
tained 68.6% of total ports and corresponded to 76.3% of the
total species flow.

Cluster Consistency. From a deployment perspective,
perhaps the most crucial contribution of our analysis is that
these major clusters continue to exist over the duration stud-
ied; for a given cluster, while some ports leave/join over
time, the vast majority of the ports continue to remain in the
same cluster (see Fig. 5). This provides a solid foundation
for devising management strategies targeting clusters and
inter-cluster connections to efficiently control species flow.
Furthermore, evolution of clusters (or how the clustering
patterns change over time) can reveal important information
on how changes in vessel movement (and ballast discharge)
patterns affect species flow dynamics. For instance, the ex-
change of the order of the two clusters Mediterranean and
Western_Europe from 2002–2003 to 2005–2006 indicates a
relative increase of species exchange among ports that be-
long to these clusters during 2005–2006, which can be at-
tributed to the merger of a significant proportion of ports be-
longing to Mediterranean cluster with South European At-

lantic Shelf cluster to form the Tropical_East_Atlantic

cluster in 2005–2006. Another example is the formation of
a new smaller cluster (the eighth in Fig. 5) in 1999–2000 by
21 ports in California and Hawaii, including ports such as
San Francisco, Los Angeles and San Diego that previously
belonged to the Pacific cluster in 1997–1998. Such changes

can reveal large-scale trends that may be very useful in de-
vising long term management strategies.

1997-1998

Pacific

Western Europe

Mediterranean

E. North America

Indian Ocean

South America
Southeast Asia

S European Atlantic Shelf
South Africa

1999-2000 2002-2003 2005-2006

Pacific

Mediterranean

Western Europe

E. North America

Indian Ocean

Tropical East Atlantic
South America
Five Great Lakes
Black Sea

Figure 5: Illustration of evolution of major clusters dur-
ing the period of 1997–2006. The clusters in alluvial dia-
gram [21] are ranked by aggregated flow within the cluster. Here,
the columns 1997, 1999, 2002 and 2005 represent the major clus-
ters of SFN generated from LMIU datasets for 1997–1998, 1999–
2000, 2002–2003 and 2005–2006, respectively.

3. INVASION RISK ANALYSIS
Quantification of invasion risk is a challenging problem be-

cause of the complex interactions between species and their
abiotic and biotic environment [28]. Here, we shift our at-
tention from inter-cluster species flow to intra-cluster (i.e.,
ports within a cluster) NIS invasion risk in order to gain
insight into the plausibility of invasions in terms of environ-
mental similarity. Previous studies have assumed that the
invasion risk is proportional to Euclidean distance between
annual averages of temperature and salinity [9,14,24]. How-
ever, this assumption may not be valid for invasive species
that often exhibit broad environmental tolerances [7, 11].
We take an approach that is based on biogeographic pat-
terns, and empirically observed temperature and salinity
tolerances for ranking invasion risks.

3.1 Invasion risk modeling
For an exchange of species to become an invasion, the

introduced species must be: (i) non-indigenous, viz., move-
ments between non-contiguous ecoregions; and (ii) able to
survive and establish in its new environment. Invasion risk
between port environments can then be ranked by consid-
ering a species assemblage (or a collection) that contains
“generalist” and “specialist” species. We have taken this ap-



2005 — 2006

Pacific

Indian Ocean

Mediterranean

W. Europe

E. North America

Tropical E. Atlantic

Figure 4: The Six Major clusters of SFN during 2005–2006. Color of dots correspond to that in Fig. 5, and white dots are
not included in any of the six major clusters. Major clusters remain largely unchanged for the duration of 1997–2006, and contain a
significant proportion of total species flow between ports.

proach to counteract the lack of relationships or data to cal-
culate or estimate exact invasion risks. Based on tempera-
ture and salinity tolerance levels (empirically-estimated long
term thermal tolerances of marine invertebrate taxa [20]),
we define invasion risk in terms of number of species groups
that can tolerate the given conditions. Specifically, six (6)
different species tolerance groups based on two (2) temper-
ature and three (3) salinity tolerance levels are considered
(see Table 3). Here, salinity tolerance levels were set to cap-
ture species types that are completely intolerant to salinity
(i.e., freshwater species), those that are restricted to marine
waters (i.e., low tolerance), and species that can survive in a
wide range of salinities (i.e., high tolerance). Risk between
any two ports is then quantified as an index created by over-
lapping the species tolerance groups as shown in Fig. 6.

Table 3: Grouping based on environmental tolerance

Species Tolerance Group Tolerance Levels

∆T (◦C) ∆S (ppt)

Tolerance Group 1 [0, 2.9] [0, 0.2]

Tolerance Group 2 [0, 2.9] [0, 2.0]

Tolerance Group 3 [0, 2.9] [0, 12]

Tolerance Group 4 [0, 9.7] [0, 0.2]

Tolerance Group 5 [0, 9.7] [0, 2.0]

Tolerance Group 6 [0, 9.7] [0, 12]

3.2 Environmental Similarity Network
Quantification of port-wise invasion risk is both difficult

and not very useful in terms of species control and man-
agement. In order to gain insight into what ports are at
risk based on species flow and environmental similarity, we
utilize a graphical representation that is referred to as the
Invasion Risk Network (IRN). An IRN is built for every ma-
jor cluster in SFN to intuitively represent the invasion risk

based on how easily species can establish in the new envi-
ronment (based on environmental tolerance, see Table 3).
Note that IRN is an undirected weighted graph, since envi-
ronmental match is symmetric, and the risk level (based on
number of tolerance groups at risk) can vary between port
pairs, respectively.

3.3 Clustering Analysis of IRN
With the edges representing the invasion risk between

ports, clustering can help detect groups of ports that have
similar environmental conditions (while belonging to differ-
ent ecoregions). The basic idea here is to exploit the fact
that the invasion risk between groups of ports that are very
dissimilar (e.g., fresh-water ports and marine ports) is lower
than ports within the same group (with relatively similar
conditions). Clustering analysis (Section 2.2) can therefore
again be utilized on IRN to identify groups of ports that are
similar in terms of invasion risk. The clusters detected here
are sub-clusters of SFN clusters (that are based on species
flow dynamics); therefore, if two ports are in the same clus-
ter of IRN, then it is very likely for an invasion to occur
between these two ports. Furthermore, if adequate species
flow control is not in place, given the frequent species ex-
changes and high chances of species establishment within
ports in an IRN cluster, an invasion to one single port will
immediately put all the other ports in the IRN sub-cluster at
risk of an invasion. Therefore, IRN clusters identify groups
of ports that would most benefit from some form of species
flow control to avoid invasions.

Note: Clustering based on flow-dynamics (simulating ran-
dom walks) is used here for identifying ports with similar en-
vironmental conditions, since an approach only considering
pair-wise distance is not capable of capturing the stepping-
stone effect.
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Figure 6: Illustration of risk level definition based on
species tolerance groups and between-port environmen-
tal differences. Sub-figure (a): identifies six (6) different species
groups that categorizes the risk of survival relative to given dif-
ference in temperature and salinity based on two (2) temperate
tolerance levels (high = can survive up to 9.7◦C and low = can
survive up to 2.9◦C temperature difference) and three (3) salinity
tolerance levels (zero = 0.2ppt, low = 2.0ppt and high = 12.0ppt
tolerance). Sub-figure (b): definition of risk level, defined based
on number of species groups as identified in (a); the colors are
generated by overlapping the layers and later enhanced for clar-
ity and ease of distinction. In this setting, risk level ranges from
0 to 6.

4. EMERGENT SPECIES FLOW CONTROL
STRATEGIES

Clustering analysis on SFN has discovered a consistent
pattern of port groupings in terms of potential species ex-
changes. One can easily identify such regions at risk, by
overlaying the ecoregions to the IRN clusters above (see
Fig. 9(a)). This allows one to consider the four factors of ves-
sel movement, ballast discharge, environmental conditions,
and ecoregion in a unique but an intuitive fashion. With
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Figure 7: Illustrating the generation of Invasion Risk Net-
work (IRN). The IRN is an undirected graph where nodes and
edges are given by the ports visited in the GSN and invasion
risk level, respectively. Shown here as examples are four ports
along with annual average temperature and salinity, and pair-
wise salinity and temperature differences. Edges drawn in solid
lines represent the risk level between ports as defined in Fig. 6;
dotted-lines show zero (0) risk edges; colored-patches are used to
show the overlap of species tolerance groups shared by a port-pair.

this knowledge in place, species exchange among ports can
be efficiently controlled by management strategies that tar-
get high species exchange pathways in order to isolate ports
and clusters of ports.

4.1 Managing inter-cluster exchanges
Consider Fig. 8 which illustrates the inter- and intra-cluster

species flow among major clusters. While we observe some
changes in inter-cluster connections, major clusters and species
exchange pathways are virtually consistent over time. There-
fore, by limiting species flow on inter-cluster connections,
species exchanges among ports could be restricted to ports
within clusters. This will combinatorially reduce the species
introduction pathways.

For instance, consider the Pacific cluster in year 2005–
2006. There are 37,596 inter-cluster connections, where Ta-
ble 4 tabulates the strongest connections. Singapore alone

Table 4: Highest inter-
cluster flow for Pacific
cluster in 2005–2006

From Port To Port

Singapore Port Said

Singapore Richards Bay

Mormugao Singapore

Suez Singapore

Paradip Singapore

Visakhapatnam Singapore

Tubarao Singapore

Chennai Singapore

Ponta da Madeira Singapore

Table 5: Major inter-
cluster contributors in
2005–2006

Cluster Port

Pacific Singapore

Mediterranean Gibraltar

W. Euro Rotterdam

E. N. America New York

Indian Ocean Mormugao

S. America Tubarao

Great Lakes Seven Islands

Black Sea Istanbul

W. N. America Long Beach

contributes to approximately 26% of total inter-cluster flow
from/to Pacific cluster that contains 818 ports (see Fig. 9
for an illustration of invasion risk with respect to Singapore).
Here, via targeted ballast management on inter-cluster con-
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Figure 9: NIS invasion risk with respect to Singapore, where the colors correspond to risk level definitions in Fig. 6.
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Figure 8: Illustration of inter-cluster and intra-cluster
flow. Here, ratio of darker/lighter region explains the ratio of
intra-cluster flow (i.e., flow between ports within a cluster) to
inter-cluster flow (i.e., flow between ports belonging to different
clusters). Therefore, in major clusters, species exchange among
ports within clusters appears to be much higher compared to that
of between clusters.

nections to/from Singapore and a few other “influential”
ports, inter-cluster flow from/to Pacific cluster can be sig-
nificantly reduced (see Fig. 9(b)).

Table 5 lists ports corresponding to the highest inter-
cluster flow in major clusters for 2005–2006. Any practices
that reduced species movements through these ports would
potentially reduce a large proportion of inter-cluster species
flow. Increases in species surveillance in these ports would
strengthen the foundation for geographic allocation of risk
management efforts. Finally, increased surveillance of ports
would provide a baseline against which to measure the ef-
fectiveness of future risk reduction efforts–a baseline that is
now largely absent globally (Costello et al. 2007)

4.2 Targeting hubs for species flow control
Average path length of three (3) that is observed on SFN

indicates that species could be translocated between any two
given ports within two (2) stopovers on average. This indi-
cates a generally high risk of invasions in the absence of risk
reduction practices. In order to understand the impact of
targeted ballast management on average path length, a test

scenario based on a hypothetical SFN—ŜFN is derived as
follows: (i) choose an SFN (SFN corresponding to 2005–
2006 LMIU dataset was chosen for our experiment); then,
(ii) identify 20% of all ports with the highest degree (see

Table 6); and, finally (iii) generate ŜFN by removing all
edges to/from the above ports; this corresponds to ballast
management with 100% efficiency, i.e., zero (0) species flow
from/to these ports. Then, the average path length increases
to 6.4 indicating that it will be at least twice as difficult for
species to be translocated from one port to another. Further-
more, higher average path length also implies, (i) longer
travel times (hence, very lower chance of survival for species
during the voyage) and (ii) increased number of interme-
diate stop-overs (which is likely to dilute ballast water and
expose organisms to multiple shocks).

Table 6: Ports∗ with degree > 1000 in 2005-2006 that act
as “hubs” in SFN

Port name Degree Important pathways (connected ports)

Gibraltar 1882 Cape Finisterre, Tubarao

Dover Strait∗ 1747 Cape Finisterre, Rotterdam, Tubarao

Singapore 1569 Mormugao, Tubarao

Cape Finisterre 1387 Gibraltar, Rotterdam, Tubarao

Panama Canal∗ 1275 New Orleans

Tarifa 1224 Gibraltar, Cape Finisterre

Rotterdam 1126 Cape Finisterre, Dover Strait

∗ indicates locations in LMIU database, but do not correspond to
actual ports; connected ports are listed in decreasing order of degree.

4.3 Vessel type based management strategies
The exact amount of species relocated by a vessel depends

on many factors: ballast size, average duration per trip, fre-
quently visited ports, etc. Furthermore, vessel types we ob-
serve in GSN are often chosen for specific tasks (e.g., oil
transportation, vehicle transportation, etc.) and these ves-
sels often have their respective frequent ports/routes. There-



fore, we investigate the relationship of vessel types to inter-
and intra-cluster species flow in order to understand existing
patterns that can be helpful in devising species management
strategies (based on the 2005-2006 LMIU dataset).

(i) Frequent inter-cluster travelers: While not being
the most active vessel in the GSN, container carri-

ers correspond to 57,909, or equivalently 24% of all
inter-cluster trips in 2005-2006. Among the most fre-
quently seen vessel types, bulkers, crude oil tankers,
refrigerated general cargo ships and combined bulk

and oil carriers tend to travel inter-cluster for over
25% of the time. Furthermore, among the vessel types
that do not travel frequently, some vessel types tend
to travel inter-cluster in a majority of their trips (e.g.,
wood-chip carriers: 40.4%, livestock carriers: 34.3%,
semi-sub HL vessels: 37.4% and barge container

carriers: 55.7%).

(ii) Frequent intra-cluster travelers: Among the most
frequently travelled vessel types, passenger carriers

tend to stay within clusters for 97.6% of their trips,
thus imposing only a very minimal risk in terms of
inter-cluster species translocation. Similarly, barge

ships also stay within the cluster for 98.1% of total
trips.

4.4 Impact of environmental conditions
With proper species control on inter-cluster connections,

species flow can be confined to clusters. Even though ports
within a cluster have higher species exchanges among them,
if the environmental conditions are significantly different,
invasions are less likely to occur. On the other hand, for
ports in the same IRN cluster (hence, environmental condi-
tions are very similar), if proper species flow control is not
in place, invasions will be nearly unavoidable. For instance,
in the Pacific cluster, we observe that Hong Kong, Qing-
dao and Kaohsiung have higher species exchanges among
them; and, following clustering analysis of IRN, we also no-
tice that Hong Kong and Kaohsiung are in the same IRN
cluster. Therefore, invasions are very likely to occur in be-
tween these two ports. On the other hand, Qingdao is in
a different sub-cluster to Hong Kong, indicating these two
ports have significantly different environmental conditions—
invasions are less likely to happen between these two ports,
even with high species exchanges.

5. CONCLUDING REMARKS
Aquatic invasions via the GSN are a result of a complex

interplay of ship traffic, ballast uptake/discharge dynamics,
species survival during transport and numerous environmen-
tal/biological variables. The inherent complexity of the in-
vasive species problem has made risk assessment very dif-
ficult, and thereby has severely hampered the effectiveness
of species management efforts. To that end, we have devel-
oped an approach for more effective and efficient risk assess-
ment and management by modeling the spread of aquatic
non-indigenous species through the GSN, which is the most
important vector of aquatic invasions. Knowledge about the
patterns of GSN, within the context of species flow and inva-
sion risk, appropriate risk assessments can be generated to
help inform management strategies and regulatory policies.

In a management context, the discovered knowledge could
efficiently be used to analyze the invasion risks with re-
spect to changing climate, policy and infrastructure. Un-
derstanding the structure of the component networks and
the dynamic interactions between the different networks is
crucial to the design of policies that could cost-effectively
reduce invasions. The analyses outlined and performed in
this paper could also be used to geographically prioritize
species surveillance efforts using traditional organism sam-
pling methods (e.g., water samples, nets) and/or newer ge-
netic approaches [4]. Furthermore, our work illustrates the
value of creative use of data mining for social good via the
application to a significant societal problem.
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